Commutators of Subgroups #
If G
is a group and H₁ H₂ : Subgroup G
then the commutator ⁅H₁, H₂⁆ : Subgroup G
is the subgroup of G
generated by the commutators h₁ * h₂ * h₁⁻¹ * h₂⁻¹
.
Main definitions #
⁅g₁, g₂⁆
: the commutator of the elementsg₁
andg₂
(defined bycommutatorElement
elsewhere).⁅H₁, H₂⁆
: the commutator of the subgroupsH₁
andH₂
.commutator
: defines the commutator of a groupG
as a subgroup ofG
.
instance
Subgroup.commutator_characteristic
{G : Type u_1}
[Group G]
(H₁ H₂ : Subgroup G)
[h₁ : H₁.Characteristic]
[h₂ : H₂.Characteristic]
:
⁅H₁, H₂⁆.Characteristic
theorem
Subgroup.commutator_pi_pi_le
{η : Type u_4}
{Gs : η → Type u_5}
[(i : η) → Group (Gs i)]
(H K : (i : η) → Subgroup (Gs i))
:
The commutator of direct product is contained in the direct product of the commutators.
See commutator_pi_pi_of_finite
for equality given Fintype η
.
If g is conjugate to g ^ 2, then g is a commutator
Representatives (g₁, g₂) : G × G
of commutators ⁅g₁, g₂⁆ ∈ G
.
Equations
- commutatorRepresentatives G = Set.range fun (g : ↑(commutatorSet G)) => (Exists.choose ⋯, ⋯.choose)
Instances For
Subgroup generated by representatives g₁ g₂ : G
of commutators ⁅g₁, g₂⁆ ∈ G
.
Equations
Instances For
theorem
Subgroup.Normal.quotient_commutative_iff_commutator_le
{G : Type u_1}
[Group G]
{N : Subgroup G}
[N.Normal]
:
theorem
Subgroup.Normal.commutator_le_of_self_sup_commutative_eq_top
{G : Type u_1}
[Group G]
{N : Subgroup G}
[N.Normal]
{H : Subgroup G}
(hHN : N ⊔ H = ⊤)
(hH : IsMulCommutative ↥H)
:
If N
is a normal subgroup of G
and H
a commutative subgroup such that H ⊔ N = ⊤
,
then N
contains commutator G
.